If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2+3u-7=0
a = 4; b = 3; c = -7;
Δ = b2-4ac
Δ = 32-4·4·(-7)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-11}{2*4}=\frac{-14}{8} =-1+3/4 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+11}{2*4}=\frac{8}{8} =1 $
| 3.4x+4=3-0.4x | | 11x+6=72 | | 14x+150=1920 | | (2x+37)+(3x+71)+(2x+37)=180 | | 2x+4/4+4x-4=10x-3 | | 10x9=69 | | 10=a+3a+2 | | a=a+1=2a | | a+9=2a-2 | | (2x+37)+(3x+71)+(x)=180 | | 2x-x-1=10 | | 3a-4/a=9a-20/3a-4 | | (10x)^9=100 | | 6y-9=2y-5=8y+17-4y | | 2x+4/4+4x-4/3=10x-3 | | 30x^2+25x-55=6x^2-11x-10 | | -x+6=70 | | (2y+1)/3=(y-2)/4 | | 3-2b=6+b | | -3m+1=7 | | x+1/3X=3200 | | 10–7x=28–13x | | 3.2k-28=-12 | | 4+7/u-1=1/u+2 | | 16t^2+32t+180=0 | | 3(29)+12=y | | 4x=20x+20 | | 0=-100+(90)/(1+x)+(70)/((1+x)^2)+(5)/((1+x)^3) | | 14x+3(5-x)=365 | | 4x=20+20 | | n=26/4*8 | | 7x9=(7x10)-7x |